Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 27
1.
Cell Rep ; 38(1): 110189, 2022 01 04.
Article En | MEDLINE | ID: mdl-34986347

Fibrosis is a major cause of mortality worldwide, characterized by myofibroblast activation and excessive extracellular matrix deposition. Systemic sclerosis is a prototypic fibrotic disease in which CXCL4 is increased and strongly correlates with skin and lung fibrosis. Here we aim to elucidate the role of CXCL4 in fibrosis development. CXCL4 levels are increased in multiple inflammatory and fibrotic mouse models, and, using CXCL4-deficient mice, we demonstrate the essential role of CXCL4 in promoting fibrotic events in the skin, lungs, and heart. Overexpressing human CXCL4 in mice aggravates, whereas blocking CXCL4 reduces, bleomycin-induced fibrosis. Single-cell ligand-receptor analysis predicts CXCL4 to affect endothelial cells and fibroblasts. In vitro, we confirm that CXCL4 directly induces myofibroblast differentiation and collagen synthesis in different precursor cells, including endothelial cells, by stimulating endothelial-to-mesenchymal transition. Our findings identify a pivotal role of CXCL4 in fibrosis, further substantiating the potential role of neutralizing CXCL4 as a therapeutic strategy.


Extracellular Matrix/pathology , Myofibroblasts/metabolism , Platelet Factor 4/metabolism , Pulmonary Fibrosis/pathology , Scleroderma, Systemic/pathology , Animals , Bleomycin/toxicity , Cell Line , Collagen/biosynthesis , Disease Models, Animal , Endothelial Cells/cytology , Endothelial Cells/metabolism , Epithelial-Mesenchymal Transition/physiology , Human Umbilical Vein Endothelial Cells , Humans , Lung/pathology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , Myofibroblasts/cytology , Pericytes/metabolism , Platelet Factor 4/genetics , Stromal Cells/cytology , Stromal Cells/metabolism
2.
Rheumatology (Oxford) ; 61(6): 2682-2693, 2022 05 30.
Article En | MEDLINE | ID: mdl-34559222

OBJECTIVE: SSc is a complex disease characterized by vascular abnormalities and inflammation culminating in hypoxia and excessive fibrosis. Previously, we identified chemokine (C-X-C motif) ligand 4 (CXCL4) as a novel predictive biomarker in SSc. Although CXCL4 is well-studied, the mechanisms driving its production are unclear. The aim of this study was to elucidate the mechanisms leading to CXCL4 production. METHODS: Plasmacytoid dendritic cells (pDCs) from 97 healthy controls and 70 SSc patients were cultured in the presence of hypoxia or atmospheric oxygen level and/or stimulated with several toll-like receptor (TLR) agonists. Further, pro-inflammatory cytokine production, CXCL4, hypoxia-inducible factor (HIF) -1α and HIF-2α gene and protein expression were assessed using ELISA, Luminex, qPCR, FACS and western blot assays. RESULTS: CXCL4 release was potentiated only when pDCs were simultaneously exposed to hypoxia and TLR9 agonist (P < 0.0001). Here, we demonstrated that CXCL4 production is dependent on the overproduction of mitochondrial reactive oxygen species (mtROS) (P = 0.0079) leading to stabilization of HIF-2α (P = 0.029). In addition, we show that hypoxia is fundamental for CXCL4 production by umbilical cord CD34 derived pDCs. CONCLUSION: TLR-mediated activation of immune cells in the presence of hypoxia underpins the pathogenic production of CXCL4 in SSc. Blocking either mtROS or HIF-2α pathways may therapeutically attenuate the contribution of CXCL4 to SSc and other inflammatory diseases driven by CXCL4.


Platelet Factor 4/metabolism , Reactive Oxygen Species/metabolism , Scleroderma, Systemic , Toll-Like Receptor 9 , Basic Helix-Loop-Helix Transcription Factors/metabolism , Dendritic Cells/metabolism , Humans , Hypoxia/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit
3.
Int J Mol Sci ; 21(24)2020 Dec 15.
Article En | MEDLINE | ID: mdl-33333969

Angiopoietin-2 (Ang-2), a ligand of the tyrosine kinase receptor Tie2, is essential for vascular development and blood vessel stability and is also involved in monocyte activation. Here, we examined the role of Ang-2 on monocyte activation in patients with systemic sclerosis (SSc). Ang-2 levels were measured in serum and skin of healthy controls (HCs) and SSc patients by ELISA and array profiling, respectively. mRNA expression of ANG2 was analyzed in monocytes, dermal fibroblasts, and human pulmonary arterial endothelial cells (HPAECs) by quantitative PCR. Monocytes were stimulated with Ang-2, or with serum from SSc patients in the presence of a Tie2 inhibitor or an anti-Ang2 neutralizing antibody. Interleukin (IL)-6 and IL-8 production was analyzed by ELISA. Ang-2 levels were elevated in the serum and skin of SSc patients compared to HCs. Importantly, serum Ang-2 levels correlated with clinical disease parameters, such as skin involvement. Lipopolysaccharide (LPS) LPS, R848, and interferon alpha2a (IFN-α) stimulation up-regulated the mRNA expression of ANG2 in monocytes, dermal fibroblasts, and HPAECs. Finally, Ang-2 induced the production of IL-6 and IL-8 in monocytes of SSc patients, while the inhibition of Tie2 or the neutralization of Ang-2 reduced the production of both cytokines in HC monocytes stimulated with the serum of SSc patients. Therefore, Ang-2 induces inflammatory activation of SSc monocytes and neutralization of Ang-2 might be a promising therapeutic target in the treatment of SSc.


Angiopoietin-2/metabolism , Biomarkers , Inflammation Mediators/metabolism , Monocytes/metabolism , Scleroderma, Systemic/etiology , Scleroderma, Systemic/metabolism , Adult , Aged , Angiopoietin-2/blood , Case-Control Studies , Cytokines/metabolism , Female , Fibroblasts/metabolism , Humans , Male , Middle Aged , Scleroderma, Systemic/pathology , Skin/metabolism
4.
Front Immunol ; 11: 2149, 2020.
Article En | MEDLINE | ID: mdl-33042127

Fibrosis is a condition shared by numerous inflammatory diseases. Our incomplete understanding of the molecular mechanisms underlying fibrosis has severely hampered effective drug development. CXCL4 is associated with the onset and extent of fibrosis development in multiple inflammatory and fibrotic diseases. Here, we used monocyte-derived cells as a model system to study the effects of CXCL4 exposure on dendritic cell development by integrating 65 longitudinal and paired whole genome transcriptional and methylation profiles. Using data-driven gene regulatory network analyses, we demonstrate that CXCL4 dramatically alters the trajectory of monocyte differentiation, inducing a novel pro-inflammatory and pro-fibrotic phenotype mediated via key transcriptional regulators including CIITA. Importantly, these pro-inflammatory cells directly trigger a fibrotic cascade by producing extracellular matrix molecules and inducing myofibroblast differentiation. Inhibition of CIITA mimicked CXCL4 in inducing a pro-inflammatory and pro-fibrotic phenotype, validating the relevance of the gene regulatory network. Our study unveils that CXCL4 acts as a key secreted factor driving innate immune training and forming the long-sought link between inflammation and fibrosis.


Dendritic Cells/cytology , Fibrosis/immunology , Gene Regulatory Networks , Inflammation/immunology , Platelet Factor 4/physiology , Transcriptome , Cells, Cultured , Cellular Reprogramming Techniques , DNA Methylation , Decision Trees , Decitabine/pharmacology , Fibroblasts , Fibrosis/genetics , Humans , Inflammation/genetics , Monocytes/cytology , Multidimensional Scaling Analysis , Nuclear Proteins/antagonists & inhibitors , Nuclear Proteins/physiology , Poly I-C/pharmacology , RNA Interference , RNA, Small Interfering/genetics , RNA, Small Interfering/pharmacology , RNA-Seq , Trans-Activators/antagonists & inhibitors , Trans-Activators/physiology
5.
Front Immunol ; 11: 1793, 2020.
Article En | MEDLINE | ID: mdl-32973751

Inhibitory receptors are crucial immune regulators and are essential to prevent exacerbated responses, thus contributing to immune homeostasis. Leukocyte associated immunoglobulin like receptor 1 (LAIR-1) is an immune inhibitory receptor which has collagen and collagen domain containing proteins as ligands. LAIR-1 is broadly expressed on immune cells and has a large availability of ligands in both circulation and tissues, implicating a need for tight regulation of this interaction. In the current study, we sought to examine the regulation and function of LAIR-1 on monocyte, dendritic cell (DC) and macrophage subtypes, using different in vitro models. We found that LAIR-1 is highly expressed on intermediate monocytes as well as on plasmacytoid DCs. LAIR-1 is also expressed on skin immune cells, mainly on tissue CD14+ cells, macrophages and CD1c+ DCs. In vitro, monocyte and type-2 conventional DC stimulation leads to LAIR-1 upregulation, which may reflect the importance of LAIR-1 as negative regulator under inflammatory conditions. Indeed, we demonstrate that LAIR-1 ligation on monocytes inhibits toll like receptor (TLR)4 and Interferon (IFN)-α- induced signals. Furthermore, LAIR-1 is downregulated on GM-CSF and IFN-γ monocyte-derived macrophages and monocyte-derived DCs. In addition, LAIR-1 triggering during monocyte derived-DC differentiation results in significant phenotypic changes, as well as a different response to TLR4 and IFN-α stimulation. This indicates a role for LAIR-1 in skewing DC function, which impacts the cytokine expression profile of these cells. In conclusion, we demonstrate that LAIR-1 is consistently upregulated on monocytes and DC during the inflammatory phase of the immune response and tends to restore its expression during the resolution phase. Under inflammatory conditions, LAIR-1 has an inhibitory function, pointing toward to a potential intervention opportunity targeting LAIR-1 in inflammatory conditions.


Dendritic Cells/metabolism , Inflammation/metabolism , Monocytes/metabolism , Receptors, Immunologic/metabolism , Cells, Cultured , Cytokines/metabolism , Dendritic Cells/immunology , Gene Expression Regulation , Humans , Inflammation/genetics , Inflammation/immunology , Inflammation Mediators/metabolism , Macrophages/immunology , Macrophages/metabolism , Monocytes/immunology , Receptors, Immunologic/genetics , Signal Transduction
6.
Rheumatology (Oxford) ; 59(9): 2258-2263, 2020 09 01.
Article En | MEDLINE | ID: mdl-31840182

OBJECTIVES: SSc is an autoimmune disease characterized by inflammation, vascular injury and excessive fibrosis in multiple organs. Secreted protein acidic and rich in cysteine (SPARC) is a matricellular glycoprotein that regulates processes involved in SSc pathology, such as inflammation and fibrosis. In vivo and in vitro studies have implicated SPARC in SSc, but it is unclear if the pro-fibrotic effects of SPARC on fibroblasts are a result of intracellular signalling or fibroblast interactions with extracellular SPARC hampering further development of SPARC as a potential therapeutic target. This study aimed to analyse the potential role of exogenous SPARC as a regulator of fibrosis in SSc. METHODS: Dermal fibroblasts from both healthy controls and SSc patients were stimulated with SPARC alone or in combination with TGF-ß1, in the absence or presence of a TGF receptor 1 inhibitor. mRNA and protein expression of extracellular matrix components and other fibrosis-related mediators were measured by quantitative PCR and western blot. RESULTS: Exogenous SPARC induced mRNA and protein expression of collagen I, collagen IV, fibronectin 1, TGF-ß and SPARC by dermal fibroblasts from SSc patients, but not from healthy controls. Importantly, exogenous SPARC induced the activation of the tyrosine kinase SMAD2 and pro-fibrotic gene expression induced by SPARC in SSc fibroblasts was abrogated by inhibition of TGF-ß signalling. CONCLUSION: These results indicate that exogenous SPARC is an important pro-fibrotic mediator contributing to the pathology driving SSc but in a TGF-ß dependent manner. Therefore, SPARC could be a promising therapeutic target for reducing fibrosis in SSc patients, even in late states of the disease.


Fibroblasts/metabolism , Osteonectin/genetics , Scleroderma, Systemic/genetics , Skin/pathology , Transforming Growth Factor beta1/genetics , Case-Control Studies , Cells, Cultured , Extracellular Matrix/genetics , Extracellular Matrix Proteins/genetics , Fibrosis , Humans , RNA, Messenger/genetics , Signal Transduction/genetics , Skin/cytology , Transcriptional Activation/genetics
7.
Ann Rheum Dis ; 78(9): 1249-1259, 2019 09.
Article En | MEDLINE | ID: mdl-31126957

OBJECTIVES: Systemic sclerosis (SSc) is an autoimmune disease with unknown pathogenesis manifested by inflammation, vasculopathy and fibrosis in skin and internal organs. Type I interferon signature found in SSc propelled us to study plasmacytoid dendritic cells (pDCs) in this disease. We aimed to identify candidate pathways underlying pDC aberrancies in SSc and to validate its function on pDC biology. METHODS: In total, 1193 patients with SSc were compared with 1387 healthy donors and 8 patients with localised scleroderma. PCR-based transcription factor profiling and methylation status analyses, single nucleotide polymorphism genotyping by sequencing and flow cytometry analysis were performed in pDCs isolated from the circulation of healthy controls or patients with SSc. pDCs were also cultured under hypoxia, inhibitors of methylation and hypoxia-inducible factors and runt-related transcription factor 3 (RUNX3) levels were determined. To study Runx3 function, Itgax-Cre:Runx3f/f mice were used in in vitro functional assay and bleomycin-induced SSc skin inflammation and fibrosis model. RESULTS: Here, we show downregulation of transcription factor RUNX3 in SSc pDCs. A higher methylation status of the RUNX3 gene, which is associated with polymorphism rs6672420, correlates with lower RUNX3 expression and SSc susceptibility. Hypoxia is another factor that decreases RUNX3 level in pDC. Mouse pDCs deficient of Runx3 show enhanced maturation markers on CpG stimulation. In vivo, deletion of Runx3 in dendritic cell leads to spontaneous induction of skin fibrosis in untreated mice and increased severity of bleomycin-induced skin fibrosis. CONCLUSIONS: We show at least two pathways potentially causing low RUNX3 level in SSc pDCs, and we demonstrate the detrimental effect of loss of Runx3 in SSc model further underscoring the role of pDCs in this disease.


Core Binding Factor Alpha 3 Subunit/genetics , Dendritic Cells/metabolism , Gene Expression Regulation , RNA/genetics , Scleroderma, Systemic/genetics , Skin/pathology , Animals , Core Binding Factor Alpha 3 Subunit/biosynthesis , Dendritic Cells/pathology , Disease Models, Animal , Disease Progression , Fibroblasts/metabolism , Fibroblasts/pathology , Fibrosis/genetics , Fibrosis/metabolism , Fibrosis/pathology , Humans , Mice , Scleroderma, Systemic/metabolism , Scleroderma, Systemic/pathology , Skin/metabolism
8.
Arthritis Rheumatol ; 71(10): 1711-1722, 2019 10.
Article En | MEDLINE | ID: mdl-31012544

OBJECTIVE: To analyze the potential role of semaphorin 4A (Sema4A) in inflammatory and fibrotic processes involved in the pathology of systemic sclerosis (SSc). METHODS: Sema4A levels in the plasma of healthy controls (n = 11) and SSc patients (n = 20) were determined by enzyme-linked immunosorbent assay (ELISA). The expression of Sema4A and its receptors in monocytes and CD4+ T cells from healthy controls and SSc patients (n = 6-7 per group) was determined by ELISA and flow cytometry. Th17 cytokine production by CD4+ T cells (n = 5-7) was analyzed by ELISA and flow cytometry. The production of inflammatory mediators and extracellular matrix (ECM) components by dermal fibroblast cells (n = 6) was analyzed by quantitative polymerase chain reaction, ELISA, Western blotting, confocal microscopy, and ECM deposition assay. RESULTS: Plasma levels of Sema4A, and Sema4A expression by circulating monocytes and CD4+ T cells, were significantly higher in SSc patients than in healthy controls (P < 0.05). Inflammatory mediators significantly up-regulated the secretion of Sema4A by monocytes and CD4+ T cells from SSc patients (P < 0.05 versus unstimulated SSc cells). Functional assays showed that Sema4A significantly enhanced the expression of Th17 cytokines induced by CD3/CD28 in total CD4+ T cells as well in different CD4+ T cell subsets (P < 0.05 versus unstimulated SSc cells). Finally, Sema4A induced a profibrotic phenotype in dermal fibroblasts from both healthy controls and SSc patients, which was abrogated by blocking or silencing the expression of Sema4A receptors. CONCLUSION: Our findings indicate that Sema4A plays direct and dual roles in promoting inflammation and fibrosis, 2 main features of SSc, suggesting that Sema4A might be a novel therapeutic target in SSc.


CD4-Positive T-Lymphocytes/immunology , Cytokines/immunology , Fibroblasts/metabolism , Fibrosis/metabolism , Inflammation/metabolism , Monocytes/immunology , Scleroderma, Systemic/metabolism , Semaphorins/metabolism , Adult , Blotting, Western , Case-Control Studies , Enzyme-Linked Immunosorbent Assay , Extracellular Matrix/metabolism , Extracellular Matrix/pathology , Female , Fibroblasts/immunology , Fibroblasts/pathology , Fibrosis/pathology , Humans , Inflammation/immunology , Male , Microscopy, Confocal , Middle Aged , Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Scleroderma, Systemic/immunology , Scleroderma, Systemic/pathology , Skin/cytology , Th17 Cells/immunology
9.
Biosci Rep ; 38(6)2018 12 21.
Article En | MEDLINE | ID: mdl-30463908

Dendritic cells (DCs) constantly sample peripheral tissues for antigens, which are subsequently ingested to derive peptides for presentation to T cells in lymph nodes. To do so, DCs have to traverse many different tissues with varying oxygen tensions. Additionally, DCs are often exposed to low oxygen tensions in tumors, where vascularization is lacking, as well as in inflammatory foci, where oxygen is rapidly consumed by inflammatory cells during the respiratory burst. DCs respond to oxygen levels to tailor immune responses to such low-oxygen environments. In the present study, we identified a mechanism of hypoxia-mediated potentiation of release of tumor necrosis factor α (TNF-α), a pro-inflammatory cytokine with important roles in both anti-cancer immunity and autoimmune disease. We show in human monocyte-derived DCs (moDCs) that this potentiation is controlled exclusively via the p38/mitogen-activated protein kinase (MAPK) pathway. We identified MAPK kinase kinase 8 (MAP3K8) as a target gene of hypoxia-induced factor (HIF), a transcription factor controlled by oxygen tension, upstream of the p38/MAPK pathway. Hypoxia increased expression of MAP3K8 concomitant with the potentiation of TNF-α secretion. This potentiation was no longer observed upon siRNA silencing of MAP3K8 or with a small molecule inhibitor of this kinase, and this also decreased p38/MAPK phosphorylation. However, expression of DC maturation markers CD83, CD86, and HLA-DR were not changed by hypoxia. Since DCs play an important role in controlling T-cell activation and differentiation, our results provide novel insight in understanding T-cell responses in inflammation, cancer, autoimmune disease and other diseases where hypoxia is involved.


Dendritic Cells/immunology , Hypoxia/immunology , Inflammation/immunology , MAP Kinase Kinase Kinases/immunology , Proto-Oncogene Proteins/immunology , Tumor Necrosis Factor-alpha/immunology , Cell Hypoxia , Cells, Cultured , Dendritic Cells/cytology , Dendritic Cells/metabolism , Humans , Hypoxia/genetics , Inflammation/genetics , MAP Kinase Kinase Kinases/genetics , Monocytes/cytology , Proto-Oncogene Proteins/genetics , RNA Interference , RNA, Small Interfering/genetics , Toll-Like Receptor 4/immunology , Up-Regulation
10.
Nat Rev Rheumatol ; 14(11): 657-673, 2018 11.
Article En | MEDLINE | ID: mdl-30305700

Systemic sclerosis (SSc) is a severe autoimmune disease that is characterized by vascular abnormalities, immunological alterations and fibrosis of the skin and internal organs. The results of genetic studies in patients with SSc have revealed statistically significant genetic associations with disease manifestations and progression. Nevertheless, genetic susceptibility to SSc is moderate, and the functional consequences of genetic associations remain only partially characterized. A current hypothesis is that, in genetically susceptible individuals, epigenetic modifications constitute the driving force for disease initiation. As epigenetic alterations can occur years before fibrosis appears, these changes could represent a potential link between inflammation and tissue fibrosis. Epigenetics is a fast-growing discipline, and a considerable number of important epigenetic studies in SSc have been published in the past few years that span histone post-translational modifications, DNA methylation, microRNAs and long non-coding RNAs. This Review describes the latest insights into genetic and epigenetic contributions to the pathogenesis of SSc and aims to provide an improved understanding of the molecular pathways that link inflammation and fibrosis. This knowledge will be of paramount importance for the development of medicines that are effective in treating or even reversing tissue fibrosis.


Epigenesis, Genetic , Genetic Predisposition to Disease/genetics , Scleroderma, Systemic/genetics , DNA Methylation , Disease Progression , Genetic Association Studies , Humans , Protein Processing, Post-Translational , RNA, Untranslated/genetics
11.
J Autoimmun ; 89: 162-170, 2018 05.
Article En | MEDLINE | ID: mdl-29371048

OBJECTIVE: MicroRNAs (miRNAs) are regulatory molecules, which have been addressed as potential biomarkers and therapeutic targets in rheumatic diseases. Here, we investigated the miRNA signature in the serum of systemic sclerosis (SSc) patients and we further assessed their expression in early stages of the disease. METHODS: The levels of 758 miRNAs were evaluated in the serum of 26 SSc patients as compared to 9 healthy controls by using an Openarray platform. Three miRNAs were examined in an additional cohort of 107 SSc patients and 24 healthy donors by single qPCR. MiR-483-5p expression was further analysed in the serum of patients with localized scleroderma (LoS) (n = 22), systemic lupus erythematosus (SLE) (n = 33) and primary Sjögren's syndrome (pSS) (n = 23). The function of miR-483-5p was examined by transfecting miR-483-5p into primary human dermal fibroblasts and pulmonary endothelial cells. RESULTS: 30 miRNAs were significantly increased in patients with SSc. Of these, miR-483-5p showed reproducibly higher levels in an independent SSc cohort and was also elevated in patients with preclinical-SSc symptoms (early SSc). Notably, miR-483-5p was not differentially expressed in patients with SLE or pSS, whereas it was up-regulated in LoS, indicating that this miRNA could be involved in the development of skin fibrosis. Consistently, miR-483-5p overexpression in fibroblasts and endothelial cells modulated the expression of fibrosis-related genes. CONCLUSIONS: Our findings showed that miR-483-5p is up-regulated in the serum of SSc patients, from the early stages of the disease onwards, and indicated its potential function as a fine regulator of fibrosis in SSc.


Endothelial Cells/physiology , Fibroblasts/physiology , MicroRNAs/genetics , Scleroderma, Systemic/genetics , Skin/pathology , Adult , Aged , Cohort Studies , Female , Fibrosis , Genetic Testing , Humans , Male , Middle Aged , Up-Regulation
12.
Immunol Lett ; 195: 18-29, 2018 03.
Article En | MEDLINE | ID: mdl-29126878

Systemic sclerosis (SSc) is a complex heterogeneous fibrotic autoimmune disease with an unknown exact etiology, and characterized by three hallmarks: fibrosis, vasculopathy, and immune dysfunction. Dendritic cells (DCs) are specialized cells in pathogen sensing with high potency of antigen presentation and capable of releasing mediators to shape the immune response. Altered DCs distributions and their impaired functions may account for their role in breaking the immune tolerance and driving inflammation in SSc, and the direct contribution of DCs in promoting endothelial dysfunction and fibrotic process has only begun to be understood. Plasmacytoid dendritic cells in particular have been implicated due to their high production of type I interferon as well as other cytokines and chemokines, including the pro-inflammatory and anti-angiogenic CXCL4. Furthermore, a deeper understanding of human and mouse DC biology has clarified their identification and function in different tissues, and novel DC subsets have only recently been discovered. In this review, we highlight key findings and recent advances exploring DC role in the pathogenesis of SSc and other related autoimmune diseases, and consideration of their potential use as targeted therapy in SSc.


Dendritic Cells/immunology , Inflammation/immunology , Scleroderma, Systemic/immunology , Animals , Antigen Presentation , Cell Differentiation , Humans , Mice , Models, Animal , Platelet Factor 4/metabolism
13.
Eur J Immunol ; 48(3): 522-531, 2018 03.
Article En | MEDLINE | ID: mdl-29193036

CXCL4 regulates multiple facets of the immune response and is highly upregulated in various Th17-associated rheumatic diseases. However, whether CXCL4 plays a direct role in the induction of IL-17 production by human CD4+ T cells is currently unclear. Here, we demonstrated that CXCL4 induced human CD4+ T cells to secrete IL-17 that co-expressed IFN-γ and IL-22, and differentiated naïve CD4+ T cells to become Th17-cytokine producing cells. In a co-culture system of human CD4+ T cells with monocytes or myeloid dendritic cells, CXCL4 induced IL-17 production upon triggering by superantigen. Moreover, when monocyte-derived dendritic cells were differentiated in the presence of CXCL4, they orchestrated increased levels of IL-17, IFN-γ, and proliferation by CD4+ T cells. Furthermore, the CXCL4 levels in synovial fluid from psoriatic arthritis patients strongly correlated with IL-17 and IL-22 levels. A similar response to CXCL4 of enhanced IL-17 production by CD4+ T cells was also observed in patients with psoriatic arthritis. Altogether, we demonstrate that CXCL4 boosts pro-inflammatory cytokine production especially IL-17 by human CD4+ T cells, either by acting directly or indirectly via myeloid antigen presenting cells, implicating a role for CXCL4 in PsA pathology.


Arthritis, Psoriatic/immunology , Interleukin-17/biosynthesis , Interleukins/metabolism , Platelet Factor 4/immunology , Th17 Cells/immunology , Antigen-Presenting Cells/immunology , Case-Control Studies , Cell Differentiation/immunology , Coculture Techniques , Dendritic Cells/immunology , Humans , Lymphocyte Activation , Monocytes/immunology
14.
Arthritis Rheumatol ; 69(9): 1891-1902, 2017 09.
Article En | MEDLINE | ID: mdl-28556560

OBJECTIVE: Plasmacytoid dendritic cells (PDCs) are a critical source of type I interferons (IFNs) that can contribute to the onset and maintenance of autoimmunity. Molecular mechanisms leading to PDC dysregulation and a persistent type I IFN signature are largely unexplored, especially in patients with systemic sclerosis (SSc), a disease in which PDCs infiltrate fibrotic skin lesions and produce higher levels of IFNα than those in healthy controls. This study was undertaken to investigate potential microRNA (miRNA)-mediated epigenetic mechanisms underlying PDC dysregulation and type I IFN production in SSc. METHODS: We performed miRNA expression profiling and validation in highly purified PDCs obtained from the peripheral blood of 3 independent cohorts of healthy controls and SSc patients. Possible functions of miRNA-618 (miR-618) on PDC biology were identified by overexpression in healthy PDCs. RESULTS: Expression of miR-618 was up-regulated in PDCs from SSc patients, including those with early disease who did not present with skin fibrosis. IFN regulatory factor 8, a crucial transcription factor for PDC development and activation, was identified as a target of miR-618. Overexpression of miR-618 reduced the development of PDCs from CD34+ cells in vitro and enhanced their ability to secrete IFNα, mimicking the PDC phenotype observed in SSc patients. CONCLUSION: Up-regulation of miR-618 suppresses the development of PDCs and increases their ability to secrete IFNα, potentially contributing to the type I IFN signature observed in SSc patients. Considering the importance of PDCs in the pathogenesis of SSc and other diseases characterized by a type I IFN signature, miR-618 potentially represents an important epigenetic target to regulate immune system homeostasis in these conditions.


Dendritic Cells/metabolism , Epigenesis, Genetic , MicroRNAs/blood , Scleroderma, Systemic/genetics , Adult , Antigens, CD34/metabolism , Case-Control Studies , Female , Humans , Interferon-alpha/metabolism , Male , Middle Aged , Scleroderma, Systemic/blood , Up-Regulation
15.
J Immunol ; 197(8): 3326-3335, 2016 10 15.
Article En | MEDLINE | ID: mdl-27647831

Systemic sclerosis (SSc) is an autoimmune disease characterized by fibrosis of the skin and visceral organs and vascular alterations. SSc pathophysiology involves systemic inflammation and oxidative stress. Because the vanin-1 gene (vnn1) encodes an enzyme with pantetheinase activity that converts vasculoprotective pantethine into profibrotic pantothenic acid and pro-oxidant cystamine, we tested this pathway in the pathophysiology of SSc. Activation of the vanin-1/pantetheinase pathway was investigated in wild-type BALB/c mice with hypochlorous acid (HOCl)-induced SSc by ELISA and Western blotting. We then evaluated the effects of the inactivation of vnn1 on the development of fibrosis, endothelial alterations, and immunological activation in mice with HOCl- and bleomycin-induced SSc. We then explored the vanin-1/pantetheinase pathway in a cohort of patients with SSc and in controls. In wild-type mice with HOCl-induced SSc, the vanin-1/pantetheinase pathway was dysregulated, with elevation of vanin-1 activity in skin and high levels of serum pantothenic acid. Inactivation of the vnn1 gene in vnn1-/- mice with HOCl-induced SSc prevented the development of characteristic features of the disease, including fibrosis, immunologic abnormalities, and endothelial dysfunction. Remarkably, patients with diffuse SSc also had increased expression of vanin-1 in skin and blood and elevated levels of serum pantothenic acid that correlated with the severity of the disease. Our data demonstrate that vanin-1/pantetheinase controls fibrosis, vasculopathy, autoimmunity, and oxidative stress in SSc. The levels of vanin-1 expression and pantothenic acid determine SSc severity and can be used as markers of disease severity. More importantly, inhibition of vanin-1 can open new therapeutic approaches in SSc.


Amidohydrolases/metabolism , Scleroderma, Systemic/metabolism , Animals , Female , GPI-Linked Proteins/metabolism , Mice , Mice, Inbred BALB C , Pantothenic Acid/metabolism
16.
Semin Immunopathol ; 37(5): 475-87, 2015 Sep.
Article En | MEDLINE | ID: mdl-26168983

Systemic sclerosis (SSc) is a complex autoimmune disease in which immune activation, vasculopathy, and extensive fibrosis of the skin and internal organs are among the principal features. SSc is a heterogeneous disease with varying manifestations and clinical outcomes. Currently, patients' clinical evaluation often relies on subjective measures, non-quantitative methods, or requires invasive procedures as markers able to predict disease trajectory or response to therapy are lacking. Therefore, current research is focusing on the discovery of useful biomarkers reflecting ongoing inflammatory or fibrotic activity in the skin and internal organs, as well as being predictive of future disease course. Recently, remarkable progress has been made towards a better understanding of numerous mechanisms involved in the pathogenesis of SSc. This has opened new possibilities for the development of novel biomarkers and therapy. However, current proposed biomarkers that could reliably describe various aspects of SSc still require further investigation. This review will summarize studies describing the commonly used and validated biomarkers, the newly emerging and promising SSc biomarkers identified to date, and consideration of future directions in this field.


Scleroderma, Systemic/diagnosis , Skin/pathology , Biomarkers , Disease Progression , Fibrosis , Humans , Prognosis , Scleroderma, Systemic/blood , Scleroderma, Systemic/pathology
17.
J Invest Dermatol ; 135(10): 2385-2393, 2015 Oct.
Article En | MEDLINE | ID: mdl-25938558

Chronic graft-versus-host disease (GVHD) follows allogeneic hematopoietic stem cell transplantation. It results from alloreactive processes induced by minor histocompatibility antigen incompatibilities leading to the activation of CD4 T cells and the development of fibrosis and inflammation of the skin and visceral organs and autoimmunity that resemble systemic sclerosis. EGFR is a ubiquitous cell receptor deeply involved in cell proliferation, differentiation, and motility. EGFR has recently been implicated in autoimmune and fibrotic diseases. Therefore, we tested whether Erlotinib, an EGFR tyrosine kinase inhibitor, can prevent sclerodermatous GVHD (Scl-GVHD). Scl-GVHD was induced in BALB/c mice by B10.D2 bone marrow and spleen cell transplantation. Transplanted mice displayed severe clinical symptoms including alopecia, fibrosis of the skin and visceral organs, vasculitis, and diarrhea. The symptoms were reversed in mice treated with Erlotinib. These beneficial effects were mediated by the decreased production of activated/memory CD4(+) T cells and the reduction in T-cell infiltration of the skin and visceral organs along with a decrease in IFN-γ and IL-13 production and autoimmune B-cell activation. The improvement provided by Erlotinib in the mouse model of Scl-GVHD supplies a rationale for the evaluation of Erlotinib in the management of patients affected by chronic GVHD.


CD4-Positive T-Lymphocytes/drug effects , Erlotinib Hydrochloride/pharmacology , Graft vs Host Disease/drug therapy , Graft vs Host Disease/prevention & control , Scleroderma, Localized/drug therapy , Scleroderma, Localized/prevention & control , Allografts , Analysis of Variance , Animals , Biopsy, Needle , Blotting, Western , CD4-Positive T-Lymphocytes/metabolism , Disease Models, Animal , Enzyme-Linked Immunosorbent Assay , Female , Flow Cytometry , Graft vs Host Disease/etiology , Hematopoietic Stem Cell Transplantation/adverse effects , Hematopoietic Stem Cell Transplantation/methods , Immunohistochemistry , Interferon-gamma/metabolism , Interleukin-13/metabolism , Mice , Mice, Inbred BALB C , Polymerase Chain Reaction/methods , Protein-Tyrosine Kinases/antagonists & inhibitors , Protein-Tyrosine Kinases/pharmacology , Random Allocation , Reference Values , Scleroderma, Localized/etiology , Scleroderma, Localized/pathology
18.
Arthritis Rheumatol ; 67(7): 1881-90, 2015 Jul.
Article En | MEDLINE | ID: mdl-25776044

OBJECTIVE: Endothelial cell (EC) damage in systemic sclerosis (SSc) is reflected by the shedding of microparticles (MPs). The aim of this study was to show that inhibiting MP release using pantethine or by inactivating ATP-binding cassette transporter A1 (ABCA1) ameliorates murine SSc. METHODS: First, the effects of pantethine on MP shedding and on basal oxidative and nitrosative stresses in ECs and fibroblasts were determined in vitro. The effects of pantethine were then tested in vivo. SSc was induced in BALB/c mice by daily intradermal injection of HOCl. Mice were simultaneously treated daily with pantethine by oral gavage. RESULTS: In vitro, pantethine inhibited MP shedding from tumor necrosis factor-stimulated ECs and abrogated MP-induced oxidative and nitrosative stresses in ECs and fibroblasts. Ex vivo, pantethine also restored redox homeostasis in fibroblasts from mice with SSc. In vivo, mice with SSc displayed skin and lung fibrosis associated with increased levels of circulating MPs and markers of oxidative and endothelial stress, which were normalized by administration of pantethine or inactivation of ABCA1. CONCLUSION: Pantethine is a well-tolerated molecule that represents a potential treatment of human SSc.


Cell-Derived Microparticles/drug effects , Cell-Derived Microparticles/pathology , Endothelial Cells/pathology , Pantetheine/analogs & derivatives , Scleroderma, Systemic/pathology , Scleroderma, Systemic/prevention & control , ATP Binding Cassette Transporter 1/deficiency , ATP Binding Cassette Transporter 1/genetics , ATP Binding Cassette Transporter 1/metabolism , Administration, Oral , Animals , Bleomycin/administration & dosage , Bleomycin/adverse effects , Cells, Cultured , Disease Models, Animal , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Female , Fibroblasts/drug effects , Fibroblasts/metabolism , Fibroblasts/pathology , Homeostasis/drug effects , Hypochlorous Acid/administration & dosage , Hypochlorous Acid/adverse effects , In Vitro Techniques , Injections, Intradermal , Mice , Mice, Inbred BALB C , Mice, Knockout , Oxidative Stress/drug effects , Pantetheine/administration & dosage , Pantetheine/pharmacology , Pantetheine/therapeutic use , Scleroderma, Systemic/chemically induced , Treatment Outcome
19.
Anticancer Agents Med Chem ; 14(7): 963-74, 2014.
Article En | MEDLINE | ID: mdl-24372527

Cancer cells display an overproduction of reactive oxygen species resulting from an exaggerated intrinsic oxidative stress. However, the concept of deleterious oxidants versus beneficial antioxidants has recently evolved. Indeed, molecules like natural coumarins have shown anti-oxidant or pro-oxidant properties depending on their intracellular concentration. Therefore, we have investigated the structure-activity relationship of a variety of coumarin derivatives in terms of cytotoxicity towards human and murine carcinoma cell lines (HT29, HepG2, A549, MCF7, OVCAR and CT26). Amongst those compounds, (E)-7-methoxy-4-(3-oxo-3- phenylprop-1-enyl)-2H-chromen-2-one and (E)-7-hydroxy-4-(3-(4-hydroxyphenyl)-3-oxoprop-1-enyl)-2H-chromen-2-one displayed the most potent cytotoxic effect on colon cancer cells, CT26, (IC50=4.9µM) linked to their pro-oxidant properties. Those compounds triggered the in vitro production of reactive oxygen species by tumor cells, leading to their death through a necrotic process. In vivo, molecules also slowed down tumor growth by 65.7% and 35.4%, respectively, without inducing significant side effects.


Antineoplastic Agents/pharmacology , Chalcones/pharmacology , Coumarins/pharmacology , Animals , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Chalcones/chemistry , Coumarins/chemistry , Female , Heterografts , Humans , Inhibitory Concentration 50 , Kidney/pathology , Liver/pathology , Mice, Inbred BALB C , Necrosis , Neoplasm Transplantation , Reactive Oxygen Species/metabolism , Structure-Activity Relationship
20.
Arthritis Res Ther ; 15(5): R167, 2013 Oct 28.
Article En | MEDLINE | ID: mdl-24286210

INTRODUCTION: The aim of this study was to test the naturally occurring organosulfur compound dipropyltetrasulfide (DPTTS), found in plants, which has antibiotic and anticancer properties, as a treatment for HOCl-induced systemic sclerosis in the mouse. METHODS: The prooxidative, antiproliferative, and cytotoxic effects of DPTTS were evaluated ex vivo on fibroblasts from normal and HOCl mice. In vivo, the antifibrotic and immunomodulating properties of DPTTS were evaluated in the skin and lungs of HOCl mice. RESULTS: H2O2 production was higher in fibroblasts derived from HOCl mice than in normal fibroblasts (P < 0.05). DPTTS did not increase H2O2 production in normal fibroblasts, but DPTTS dose-dependently increased H2O2 production in HOCl fibroblasts (P < 0.001 with 40 µM DPTTS). Because H2O2 reached a lethal threshold in cells from HOCl mice, the antiproliferative, cytotoxic, and proapoptotic effects of DPTTS were significantly higher in HOCl fibroblasts than for normal fibroblasts. In vivo, DPTTS decreased dermal thickness (P < 0.001), collagen content in skin (P < 0.01) and lungs (P < 0.05), αSMA (P < 0.01) and pSMAD2/3 (P < 0.01) expression in skin, formation of advanced oxidation protein products and anti-DNA topoisomerase-1 antibodies in serum (P < 0.05) versus untreated HOCl mice. Moreover, in HOCl mice, DPTTS reduced splenic B-cell counts (P < 0.01), the proliferative rates of B-splenocytes stimulated by lipopolysaccharide (P < 0.05), and T-splenocytes stimulated by anti-CD3/CD28 mAb (P < 0.001). Ex vivo, it also reduced the production of IL-4 and IL-13 by activated T cells (P < 0.05 in both cases). CONCLUSIONS: The natural organosulfur compound DPTTS prevents skin and lung fibrosis in the mouse through the selective killing of diseased fibroblasts and its immunomodulating properties. DPTTS may be a potential treatment for systemic sclerosis.


Fibroblasts/drug effects , Hydrogen Peroxide/metabolism , Scleroderma, Systemic/prevention & control , Sulfides/pharmacology , Actins/metabolism , Animals , Apoptosis/drug effects , Autoantibodies/blood , Autoantibodies/immunology , Cell Proliferation/drug effects , Cells, Cultured , Collagen/metabolism , DNA Topoisomerases, Type I/immunology , Dose-Response Relationship, Drug , Female , Fibroblasts/metabolism , Fibroblasts/pathology , Fibrosis/metabolism , Fibrosis/prevention & control , Flow Cytometry , Hypochlorous Acid , Interleukin-13/metabolism , Interleukin-4/immunology , Interleukin-4/metabolism , Lung/drug effects , Lung/metabolism , Lung/pathology , Lymphocytes/drug effects , Lymphocytes/immunology , Lymphocytes/metabolism , Mice , Mice, Inbred BALB C , Scleroderma, Systemic/chemically induced , Scleroderma, Systemic/immunology , Skin/drug effects , Skin/metabolism , Skin/pathology , Smad Proteins/metabolism
...